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Abstract
We describe our submission to the TREC-6 Spoken Document Retrieval (SDR) track and the speech recognition and
the information retrieval engines. We present SDR evaluation results and a brief analysis. A few developments and
experiments are also described in detail including:

• Vocabulary size experiments, which assess the effect of words missing from the speech recognition vocabulary.
For our 51,000-word vocabulary the effect was minimal.

• Speech recognition using a stemmed language model, where the model statistics of words containing the same
root are combined. Stemmed language models did not improve speech recognition or information retrieval.

• Merging the IBM and CMU speech recognition data. Combining the results of two independent recognition
systems slightly boosted information retrieval results.

• Confidence annotations that estimate of the correctness of each recognized word. Confidence annotations did
not appear to improve retrieval.

• N-best lists where the top recognizer hypotheses are used for information retrieval. Using the top 50 hypotheses
dramatically improved performance in the test set.

• Effects of corpus size on the SDR task. As more documents are added to the task, the gap between perfect
retrieval and retrieving spoken documents gets larger. This makes it clear that the size of the current TREC
SDR track corpus is too small for obtaining meaningful results.

While we have done preliminary experiments with these approaches, most of them were not part of our submission,
since their impact on the IR performance on the actual TREC SDR training corpus was too marginal for reliable
experiments.

1. The SDR Data and Task
The speech data for the 1997 TREC spoken document retrieval track consisted of about 70 hours of broadcast news
mostly from CNN and NPR shows. The data had been segmented into stories and manually transcribed. There were
three “versions” of the data available: A manually generated transcript (which also contained some errors), a speech
recognition transcript provided by IBM, and the raw audio data, to be transcribed by our own recognizer. About 35
hours of this corpus was classified as training data, which we used to train the Sphinx-III speech recognition system.
The remainder was held out as unseen test data. There were about 1200 stories in the training data set and 1451 in
the test set. To develop and debug the system, there were 5 training queries available and the test data consisted of
49 queries.
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Scoring Metrics
The test queries were designed to simulate a known item retrieval task. For each query, there was only one document
considered relevant for the purposes of this evaluation. While other documents may have some relevance to the
query, only the document it was designed to retrieve was scored as a correct retrieval. To reflect the nature of this
task, we used the following metric:

Inverse Average Inverse Rank (IAIR)

( )∑ −≡

i
irank 1

1
IAIR

Where irank  is the rank of document i

One characteristic of the IAIR is that it rewards correct documents near the top more than documents in the middle
or towards the end of the rankings. In our opinion this is a reflection of desired behavior in an IR system, and we
used the metric exclusively in our analysis.

Idiosyncrasies of Known Item Retrieval
One of the idiosyncrasies of the known item retrieval paradigm is that only one document is defined to be relevant to
the query. Therefore, it is in the interest of the IR system to maximize the score for this document, rather than
maximize the overall number of relevant documents retrieved. As a consequence, we found that query expansion did
not produce a better IAIR score. In addition, the IR system performed better when as many of the query terms as
possible appeared in the correct document, despite the presence of erroneously recognized query terms in the
incorrect documents. Generally, known item retrieval seems to favor the detection of correctly identified query
terms over the rejection of falsely identified query terms and this is demonstrated in our experiments below.

2. System Overview
In this section we give a system description of the actual CMU TREC-6 SDR submission. The speech recognition
system is outlined as well as a fully automatic information retrieval weighting scheme suitable for retrieving
documents transcribed (with errors) by automatic speech recognition.

The Speech Recognition Component
The Sphinx-III speech recognition system was used for the CMU TREC SDR evaluation, and it was configured
similar to the 1996 DARPA CSR evaluation [10], although several changes have been made since then. Sphinx-III is
a large vocabulary, speaker independent, fully continuous hidden Markov model speech recognizer with separately
trained acoustic, language and lexical models.

For the current evaluation a gender-independent HMM with 6000 senonically-tied states [5] and 16 diagonal-
covariance Gaussian mixtures was trained on a union of the CSR Wall Street Journal corpus and the 1996 TREC-6
training set.

The decoder used a Katz-smoothed trigram language model trained on the 1992-1996 Broadcast News Language
Modeling (BN LM) corpus. This is a fairly standard language model, much like those that have been used in the
DARPA speech recognition community for the past several years. As a space optimization singleton trigrams and
bigrams were excluded. As a new feature, this language model incorporated cross-sentence-boundary trigrams to
better model utterances containing more than one sentence.



The lexicon was chosen from the most common words in this corpus, and to be a size that balances the trade-off
between leaving words out-of-vocabulary and introducing acoustically confusable words [9]. For this evaluation, the
vocabulary was comprised of the most frequent 51,000 words in the BN LM corpus, supplemented by some 200
multi-word phrases and some 150 acronyms. The vocabulary size was initially based on our experience with
broadcast news, and a subsequent careful analysis of the trade-offs showed that our choice was a very good one.
More details of the trade-off involved in vocabulary selection are provided below.

In contrast to the earlier Sphinx-II speech recognition system, Sphinx-III boasts a higher accuracy but at significant
cost. To achieve a lower word error rate of 27.4% versus 45.9% for Sphinx-II on a subset of the training data, the
original Sphinx-III system processing time increased to 120 times real time on a 266 MHz DEC Alpha compared
with only 1.4 times real time for Sphinx-II. By reducing the beam width of the search and optimizing the space
required, we reduced the Sphinx-III processing time to about 30 times real time, with only a slight loss in word
transcription accuracy. Decoding the audio files in the test data thus required about 1000 hours of CPU time.

The Information Retrieval Component
Both documents and queries were processed using the same conditioning tools, namely noise filtering, stopword
removal, and term stemming:

• Noise Filtering: The goal of noise filtering was simply to remove non-alphabet ASCII characters, punctuation,
and other junk considered irrelevant to IR. All punctuation was removed except for spelled-letter words, e.g. "C.
M. U," and the use of the apostrophe for contractions, e.g. "CAN’T." Any changes in case were removed.

• Stopword removal: A set of 811 stopwords was compiled from a combination of the SMART IR engine and
several selected by hand based on document frequency. These words were removed entirely.

• Term mappings: A set of 4578 mappings was used to map words with irregular word endings that were not
properly covered by an implementation of the Porter [7] algorithm. An on-line Houghton-Mifflin dictionary was
used for this lookup of irregular words and their roots.
An example of this mapping is APPENDICES→APPENDIX

• Term stemming: An implementation of the Porter algorithm was applied to map words to their common root.

A heavily stripped down core of the CMU Informedia SEIDX engine was used to compare queries with documents.
A relevance score was created for each pair according to the following equation:
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iidf Inverse document frequency for vocabulary word i

sign Sign of value function (0 if 0, 1 if positive)

3. Official TREC-6 SDR Results
Table 1 shows the official CMU TREC SDR results. Since the transcriptions were subject to filtering as discussed
above, the word error rates are reported for both the unfiltered and filtered references and hypotheses. An analysis of
the results showed several preprocessing errors and confirmed an insight into the relationship between word error
rate and information retrieval.



WERTranscription
Source Unfiltered Filtered

IAIR

Reference 0 0 1.35

CMU-SR 35.5 26.4 1.44

IBM-SR 45.6 47.4 1.64

Table 1: Performance of the CMU TREC-6 SDR Evaluation System

Vocabulary Coverage
The words that were in the queries but were missing from the speech recognizer’s 51,000 word vocabulary were
“CIA”, “TORCHED?”, “SMOKING?”, “WELL_KNOWN”, and “GOLDFINGER”. These problems are primarily due to
inconsistencies in the preprocessing phases. While “C.I.A.” was in the vocabulary, “CIA” was not, resulting in a
completely missed word during information retrieval. Similarly, an oversight in the preprocessing phase allowed the
question mark to become part of the word in “torched?” and “smoking?”. For “well-known”, each of the
component words “well” and “known” were in the vocabulary, but the compound “well-known” was not there
as a single token, and thus was treated as an irretrievable word. The only true missing word in our 51,000-word
vocabulary was “Goldfinger”. Thus the 51,000-word vocabulary selection provided excellent coverage for this
test evaluation.

Recognition Accuracy versus Information Retrieval Quality
The official results confirm that vastly reduced word errors rate translates into slight improvements in information
retrieval. Comparing the performance on the IBM speech recognition data to the CMU speech recognition, on the
filtered texts, we find that nearly doubling the word error rate led to only a 14% decrease in information retrieval
quality.

4. Experiments
In order to create meaningful experiments with the TREC-6 training data, 1167 documents were selected from the
set and headlines were generated for 374 of them by hand. In addition, a much smaller test set composed of 103
broadcast news stories from a privately collected corpus was acquired to investigate ideas involving the speech
recognition configuration. We shall refer to this latter test set as the “small test set.”

4.1. Vocabulary Size Experiments
Prior to the evaluation we attempted to find a good vocabulary size that was optimized for both speech recognition
and information retrieval. We chose three different vocabulary sizes, 40,000, 51,000 and 64,000 words, constructed
a language model for each one, and then performed speech recognition. Table 2 shows that as the vocabulary got
larger, the rate of out-of-vocabulary words decreased, but beyond 51,000 words speech recognition accuracy did not
improve. Additional vocabulary coverage was thus obtained at the cost of adding many acoustically confusable
words, and information retrieval effectiveness decreased slightly. We chose to use the 51,000-word vocabulary for
our official submission, resulting in only one query word in the final 49 test to be missing.



Vocabulary
Size

Out Of
Vocabulary

Rate

Word
Error
Rate

IAIR

40k Words 1.13 % 26.4 % 1.24
51k Words 0.83 % 26.8 % 1.21

64k Words 0.75 % 26.8 % 1.22

Table 2: Effect of Vocabulary Size on System Performance.

4.2. Stemmed Language Models
Using a small test set described above and the 51,000-word vocabulary, we also investigated the concept of
language modeling tailored specifically to information retrieval. Since the words in the recognition output are
filtered, a language model was built from a stemmed version of the LM training data. Each root word in the
language model had multiple pronunciations to reflect the original words before filtering. Others have used this
technique to improve language modeling when the vocabulary is open-ended or indeterminate [3].

For example, suppose the root forms of the words “recognize”, “recognized”, and “recognition” all map
into the common root “recogni”+suffix, where suffix in this case is either “ze”, “zed”, or “tion”. The
stemmed language model would provide only one transition from the root “recogni” into words that can follow,
in effect collapsing multiple paths between individual words into one path between root words. The lexicon would
reflect the alternate original words as alternate pronunciation of the root word, i.e.

Recogni R EH K AX G N AY Z

Recogni(2) R EH K AX G N AY Z DD

Recogni(3) R EH K AX G N IH SH AX N

The premise was that this stemmed language model would avoid much of the confusion due to acoustic variations in
suffixes of words, but would aid in the correct recognition of the important roots of the words. Table 3 shows the
results of these experiments. The word error rate of the stemmed language model was higher than for the baseline
language model. The WER increased both if only stemmed words were counted, as well as when all original words
were compared. Furthermore the information retrieval effectiveness (as measured by the inverse average inverse
rank metric) also showed a decrease.

Word Error Rate
Language Model

Unfiltered Filtered
IAIR

Baseline 26.8 % 22.6 % 1.17
Stemmed 35.1 % 23.8 % 1.25

Table 3: Using a language model built from stemmed LM training texts.

4.3. Merging Multiple Sources of Speech Recognition Data
Since the IBM speech recognition system was developed independently of the CMU system, and it used different
training data, vocabulary, and language models, it occurred to us that a combination of the two speech recognition
transcripts might allow some randomly distributed errors to be recovered. Instead of mixing the recognition outputs,
we formed a weighted relevance score in the following way:
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CMUScore The relevance score using the CMU recognition output

IBMScore The relevance score using the IBM recognition output

λ  An interpolation weight

Results on the TREC-6 testing set are shown in Table 4, showing a slight reduction of retrieval error when the CMU
weight is 0.8 and the IBM weight is 0.2. Thus multiple recognizers, even with widely varying word error rates, can
be combined to improve information retrieval performance.

CMU Weight IBM Weight IAIR
1.0 0.0 1.382
0.9 0.1 1.379
0.8 0.2 1.375
0.7 0.3 1.395
0.6 0.4 1.394
0.5 0.5 1.421
0.4 0.6 1.467
0.3 0.7 1.462
0.2 0.8 1.467
0.1 0.9 1.548
0.0 1.0 1.581

Table 4: Results of merging relevance from separate recognition systems.

4.4. Confidence Annotation
Since state-of-the-art speech recognition software does not produce a perfect transcript of what was said, we would
like to obtain any extra information we can about the likelihood of correctness of particular words. This is akin to a
human annotator guessing a mumbled word and indicating a possible transcription error.

An ideal automatic confidence annotator would label each word produced by the speech recognizer with a label
correct to indicate that this is in fact the word that was spoken, and incorrect to indicate that this word was not
spoken. We will compare the results of our annotation to this ideal, which we call Perfect Annotation.

Features for Confidence Annotation
The confidence annotation we performed is based on work by Lin Chase [1], though annotation has been explored
by many others including [2][3][4]. Typically confidence annotation is performed by taking information available
about individual occurrences of words in the hypothesized text, from information produced within the speech
recognizer, or outside the recognizer. These features are then automatically examined to find indicators of likely
correctness and incorrectness.

The candidate features we considered were:

• Acoustic Score. This is the score the speech recognizer assigns the word based the probability that the acoustics
observed were generated by the hypothesis.

• Language Model Score. This is a score assigned by the speech recognizer, based the probability that the word is
to occur given the previous two words.

• Duration. This is the duration of the word, and helps offset the duration dependence of the acoustic score.



• N-best Homogeneity. The N-best list is the list of the best n guesses at the words spoken in the document, sorted
according to a weighted combination of acoustic and language model scores. A word appearing in our
hypothesis may appear in many or few of the competing hypotheses. N-best list homogeneity is the proportion
of hypotheses that the word appears in. We set n to 200 for the confidence annotation experiments.

Experimental Description - Confidence Annotation
For each set of features, the experiment proceeds as follows:

• Label all words in training set as correct or incorrect1 by comparing them to the words in the words in the
reference transcript

• Build a decision tree that finds sets of features that perform well in distinguishing between correct and incorrect
words in speech recognition hypotheses.

• Use decision tree to test features of words in test set. Once a word has been sorted into a leaf node, the
proportion of correct and incorrect words from the training set with these features is used to calculate an
approximate probability of correctness

• Perform information retrieval by weighting each word according to the probability that it is correct (the
confidence).

We conducted experiments by splitting the training data into two sections, training our decision tree on one half,
testing on the other half, then reversing the roles.

Decision Tree Building
The decision tree building algorithm we use is C4.5 [8]. It functions by taking all training data, and attempting to
find rules based on features which distinguish between classes. Each item of training data is a word along with its
associated features (described above), and its class of correct or incorrect. Taking each feature does this in turn,
asking a question about that feature, and using the answer to partition the data. A feature is chosen if it has high
information gain, i.e. if the resulting two groups of data contain less of a mix of correct and incorrect. The ideal split
would create classes that contain exclusively correct or exclusively incorrect examples.

Since such ideal splits are rare, the decision tree building halts when no more information gain (reduction in
entropy) can be achieved. At this point, each leaf of the tree contains examples which have all the same features for
questions asked at each partition, and which are mostly of one class. The proportion of correct examples at this node
is the probability of correctness that will be assigned to any word with the same features.

When using the decision tree to classify a new word, we check each of its features to find which leaf-node of the
decision tree to classify it into. At that point, it is classified as having the probability of correctness corresponding to
this leaf node.

Evaluating Confidence Annotation: Cross-Entropy Reduction
The most common method of evaluating word confidence annotation is cross-entropy reduction. Cross-entropy is a
measure of how well our model of the probability of word correctness corresponds to Perfect Annotation (as defined
above). If our model annotates perfectly, its cross-entropy is 0. The worse the annotation performs the higher the
cross-entropy.
                                                       

1 incorrect words are all insertions and substitutions in the hypothesis



The most naive form of confidence annotation we can perform is to tag each word with a probability of correctness
equal to the overall word-accuracy. Thus if we know that our recognizer generally gets 80% of words correct, the
baseline confidence annotator assigns each word an 80% probability of correctness. We then measure the quality of
our annotation by measuring how much better it performs than this baseline.
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Thus we attain a figure for cross-entropy for the default model of classifying each word as correct with probability
equal to the word-accuracy, and score our improvements in modeling the probability of correctness by how much
they reduce cross-entropy as a percentage of this baseline.

Information Retrieval Using Word Confidence Weights
First we describe two orthogonal ways of using word confidence weights in the relevance scheme described above:

• Expected Term Frequency (ETF): The ETF is an estimate of how many times the term actually occurred
given the number of observations.  Assuming independent observations, this is a sum of the probability of a
word being correct over each instance.

• Expected Inverse Document Frequency (EIDF): To calculate EIDF, we first calculate the probability that this
word occurs somewhere in the document, for each document:
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Since typically, )( iwwP = is very small when iww ≠ , we only take the product over terms for which the

recognized word was w. Summing this value over all documents and dividing by the total number of documents
gives us an approximate value of the expected document frequency for this word

Oracle Experiments
Since the interaction between confidence annotation and information retrieval may be complex, we also conducted
an experiment to see how we could make use of confidence scores in the idealized case in which we know exactly
which words are correct, and which are incorrect. We removed words in two different ways:

• Pre-filter: Before the hypothesis is filtered, all the words that are not found in the reference are removed.

• Post-filter: After the hypothesis is filtered, all the words that are not found in a filtered version of the reference
are removed

Table 5 shows that for both training and testing sets, the Post-Filter Oracle annotation was able to significantly
reduce the IR error of the decoded transcripts. This indicates that a more realistic experiment might be able to do this
as well.



We performed an analysis of some of the differences between documents in the stemmed oracle experiment, and
reference information retrieval experiments. We should expect the number of query words in the correct document
to decrease, since oracle confidence annotation cannot correct for substitutions and deletions, but will drop all
incorrectly substituted and inserted words. A cursory glance at documents and queries revealed that some documents
contain more query words as speech hypotheses then the corresponding reference transcription. Our intuition here is
that speech recognition can occasionally correct for spelling errors in the references, and so words that are incorrect
with respect to the reference transcription may be correct for the purposes of information retrieval.

Baseline Performance Oracle Annotation
Reference
Transcripts

Speech
Transcripts Pre-Filter Post-Filter

Training Set 1.233 1.283 1.285 1.269
Testing Set 1.332 1.382 1.374 1.338

Table 5: Baseline and Oracle Annotation on TREC-6 Training and Testing Sets. Values are IAIR

Information Retrieval Experiments for Confidence Annotations
In order to see how well cross-entropy reduction translates into gains in information retrieval accuracy, we
conducted a series of experiments. Since we also hoped to find the best way of incorporating weights into
information retrieval we performed the following information retrieval experiments:

• ETF: for this experiment, we used ETF, and regular IDF.
• EIDF: for this experiment, we used EIDF, and regular TF.
• ETFIDF: we use both ETF and EIDF

Pre-Filter Post-Filter
ETF EIDF ETFIDF ETF EIDF ETFIDF

Training set 1.276 1.283 1.277 1.273 1.281 1.274
testing set 1.378 1.383 1.399 1.381 1.382 1.382

Table 6: Confidence Annotation Performance on TREC-6 Training and Testing Sets. Values are IAIR.
The results of these experiments are found in Table 6. Although the IAIR was reduced in most cases, the upper
bound found in the Oracle Annotation was not attained.

4.5. Using N-best Lists for Information Retrieval
Typically, speech recognition systems produce a transcription of each spoken utterance in much the same way that a
human transcriber might. However, the transcription used is only the most probable decoding of the acoustic signal,
out of a large number of hypotheses that are considered during the recognition process. It is a relatively simple
matter to obtain a list of these different hypotheses, ranked in order of decreasing likelihood.

Using these additional hypotheses seems promising for information retrieval, since it offers the hope of including
terms that would otherwise be missed by the speech recognizer in documents, allowing them to match with query
terms and increase document recall. On the other hand, words incorrectly identified in lower ranked recognition
hypotheses may cause spurious matches with query terms, decreasing retrieval precision.



Experiments Using N-Best Lists
In the context of the TREC-6 SDR task, an initial attempt was made to evaluate retrieval effectiveness using N-best
hypotheses lists generated from the speech recognition decoder lattice. N-Best hypotheses were generated for the
1451 stories in the TREC-6 SDR test data. Of these, decoding failed completely in four cases, resulting in empty
transcriptions. For the remaining 1447 stories, lists of the two hundred most likely hypotheses were generated for
each utterance. Table 7 shows an example of N-best hypotheses.

Ideally, one would use hypothesis probabilities generated during decoding to weight the terms during retrieval, but
for this preliminary experiment, the N hypotheses for each utterance were simply concatenated together into one
larger document. No discounting of weights for less probable hypotheses was done.

� ����������	
������������������	�

� HATE FAIR ADEQ EDUC CHILD WITHSTAND CALM

� HATE FAIR ADEQ EDUC CHILD WITHSTAND COMMON

� HATE FAIR ADEQ EDUC CHILD WITHSTAND INTERCOM

� HATE FAIR ADEQ EDUC CHILD WITHSTAND CALM

Table 7: The top four hypotheses for utterance three of story j960531d.7, after stop word removal and stemming.
Note that the fourth hypothesis is identical to the first, and differed only in inflected forms.

The effect on retrieval effectiveness of using the documents generated from the N-best lists in the TREC-6 test set is
illustrated in Table 8. Note that for N set to 50, the performance on the hypothesized transcripts is actually slightly
lower than performance on the reference transcripts (1.332) This may be again due to effects of misspellings in the
reference transcripts.

Number of
Hypotheses (n) 1 2 5 10 20 50 100 200

IAIR 1.368 1.353 1.366 1.365 1.367 1.317 1.320 1.325

Table 8: IR Performance of N-Best hypotheses on the TREC-6 test set.

While it is encouraging that an improvement in retrieval can be obtained at all by this method, it is clear that further
work will be required if the promise of this idea is to be realized. In particular, the increasingly harmful effect of
adding large numbers of less probable hypotheses to the documents suggests that discounting each hypothesized
word by its recognition score may improve performance even more.

4.6. Scaling The Collection Size
Many of our experiments, including some of the ones reported here, seem to suffer from two problems. The effect
size of our experimental variables seems to be fairly small, and the difference between the reference text retrieval
and the speech recognition transcript retrieval is only a few percent of the inverse average inverse rank. If this
relationship holds even as we scale to larger, more realistic, and more useful collections, then we can consider the
problem of spoken document retrieval practically solved to within a few percent of perfect text retrieval
effectiveness.

To test this hypothesis using the TREC-6 training set, we increased the number of text documents in the corpus up to
14,000 and measured the inverse average inverse rank for the same retrieval queries. However, instead of actually
performing speech recognition on the added documents, artificially degraded texts were used. In this case, the
degradation method attempted to only model word errors through deletion of query words. Although a primitive
model of speech recognition errors this may represent an upper performance bound.



Figure 1 shows the relationship between the inverse average inverse rank information retrieval performance and the
size of the document collection. As more documents are added to the collection, the gap between the reference
(perfect text) retrieval and the speech recognition based retrieval grows. At collections larger than 10,000 documents
the gap starts to widen significantly. We can expect to experience larger discrepancies between speech transcribed
and perfectly transcribed documents, which may make spoken document recognition unusable for collections
numbering in the 100,000 or larger.

1.10

1.20

1.30

1.40

1.50

1.60

100 1000 10000 100000

Reference Degraded

Figure 1: Effect of collection size on IR performance of the TREC-6 training set with reference and artificially
degraded documents. The X Axis is the number of documents used in the analysis, and the Y Axis is the IAIR.

5. Summary
There are several conclusions we can draw based on our experiments:

• First of all, we have found that even large reductions in speech recognition word error rate result only in small
information retrieval improvements. On the converse side, the quality of information retrieval is a lot higher
than the speech recognition word error rate figures would indicate. Despite fairly high word error rates,
information retrieval performance was only slightly degraded for speech recognizer transcribed documents.

• Stemmed language modeling did not help speech recognition or information retrieval.

• A 51,000 vocabulary covered the range of words used in the queries quite well. Only one query word was truly
outside of this vocabulary.

• We could expect better performance on the reference texts if better IR weighting schemes and pre-processing
functions were used. These improvements would probably also result in small gains in the speech corpus,
although we have done no studies.

• Confidence Measures provide no benefit. Even an oracle confidence measure, which can reliably single out the
correctly recognized words and discard all the other words provides only a small increase in retrieval
effectiveness (as measured in IAIR). This points to the conclusion that deleted (missing) words are most critical,
while inserted words do not affect the retrieval in the same proportion.



• Since deleted (missing) words are critical to the retrieval effectiveness, one can try to reduce this by adding
probable words from the speech recognizer hypothesis N-best list. Using the N-best list to augment the speech
recognition output with likely words shows great promise. Our experiments indicate that this approach might
drastically reduce the difference between perfect text transcripts and speech recognizer generated transcripts.

• Merging the results from multiple independent speech recognizers may also improve IR effectiveness.

In general, most of our findings are very preliminary. While we believe we may have uncovered trends, there is too
little data for conclusive experiments. As a result, we did not conduct significance tests to measure the practical
effects of the observed trends since the TREC-6 SDR track provided too little data for definitive experiments.
Furthermore, the difference between the speech recognizer generated transcripts and the perfect text transcripts was
too small in this corpus. However, the experiments we have done on increasing the scale of these document
collections by orders of magnitude leave a worrisome fear that the initially promising results for SDR will not hold
up in larger data sets.

We have viewed this participation in the TREC-6 SDR track as a learning experience, which will guide both our
own research as well as the design of future SDR track evaluations.
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